Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas.

نویسندگان

  • Peter R Wiecha
  • Arnaud Arbouet
  • Christian Girard
  • Aurélie Lecestre
  • Guilhem Larrieu
  • Vincent Paillard
چکیده

The rational design of photonic nanostructures consists of anticipating their optical response from systematic variations of simple models. This strategy, however, has limited success when multiple objectives are simultaneously targeted, because it requires demanding computational schemes. To this end, evolutionary algorithms can drive the morphology of a nano-object towards an optimum through several cycles of selection, mutation and cross-over, mimicking the process of natural selection. Here, we present a numerical technique that can allow the design of photonic nanostructures with optical properties optimized along several arbitrary objectives. In particular, we combine evolutionary multi-objective algorithms with frequency-domain electrodynamical simulations to optimize the design of colour pixels based on silicon nanostructures that resonate at two user-defined, polarization-dependent wavelengths. The scattering spectra of optimized pixels fabricated by electron-beam lithography show excellent agreement with the targeted objectives. The method is self-adaptive to arbitrary constraints and therefore particularly apt for the design of complex structures within predefined technological limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept

This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

Power System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach

This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2017